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In the preceding decade, functional neuroimaging has emerged as a pivotal
tool for psychiatric research. Techniques such as magnetic resonance imaging
(MRI) and positron emission tomography (PET) help bridge the gap between
genetic and molecular mechanisms and psychological and behavioral phenome-
na by characterizing brain dysfunction underlying psychiatric disorders on the
neural systems level. This has been of particular relevance for schizophrenia
research, This chapter reviews important fMRI studies in neurocognitive do-
mains relevant for schizophrenia, such as motor, visual, auditory, attentional, and
working memory function, as well as advances in the visualization of medication
cffects and the functional characterization of susceptibility genes.

The evolution of our understanding about the nature and treatment of
disease is often linked to technological advances providing access to otherwise
unobservable structures and processes. A case in point is the enormous benefit
medicine as a whole has derived from the development and further improvement
of imaging techniques (e.g., microscopy, sonography, computed tomography).
Arguably, however, the discipline where imaging has had the largest impact on
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our understanding of the pathophysiology, but also the very concepts of the
disease entities under study, is psychiatry. Psychiatry’s challenge is unique in that
it must provide a testable scientific account that spans levels of description leading
from genes and clementary biological processes to disturbed behavior and social
adaptation. Modern imaging techniques such as magnetic resonance imaging
(MRI) and positron emission tomography (PET) provide access to a systems-level
description of the relevant neurobiology that allows for relating the underlying
cellular and genetic processes to the ncurocognitive and psychopathological
domain. This has contributed enormously to establish and anchor psychiatric
rescarch firmly in the broader neuroscience community. In consequence,
our current understanding of psychiatric disorders is a neuroscientific one,
characterized by the interpretation of discase statcs in the context of functional,
biochemical, and microstructural alterations of the brain.

Without the insights provided by noninvasive medical imaging techniques,
the progress made in psychiatric neuroscicnce in the past decade seems unthink-
able. Even notions about the pathogenesis and treatment of psychiatric disorders
that were regarded as polar opposites have begun to be understood in a unified
framework of a neurobiologically founded diathesis-stress model. For example,
the classical dichotomy of somatotherapy and psychotherapy is becoming obso-
lete as our understanding of functional brain alterations during thesc therapeutic
modalities evolves and shows important commonalities (Goldapple ef al., 2004).
Current evidence-based etiological models of schizophrenia point toward the key
importance of interactions between predisposing vulnerability, mainly because of
genetic susceptibility conferred by multiple risk genes, and environmental factors.
The neurodevelopmental hypothesis proposes that schizophrenia emerges from
intrauterine disturbances in temporolimbic—prefrontal interactions that manifest
as clinical illness after adolescence (Weinberger, 1987). According to this hypoth-
esis, the disturbed neural interaction leads to an impairment of prefrontal
function manifesting as negative symptoms (e.g., blunted speech, lack of drive)
and cognitive deficits, especially in the executive domain (e.g., working memory,
selective attention). Because of deficient prefrontal control exerted on phylogen-
etically older brain areas, subcortical dopamine release in the basal ganglia is
thought to become disinhibited, a phenomenon linked, possibly by the relevance
of dopaminc for the stabilization of cortical neural assemblies, to the emergence
of positive symptoms like hallucinations and delusions (Meyer-Lindenberg et al.,
2002).

Since the early 1990s, physiological alterations of brain function have
been investigated with functional magnetic resonance imaging (fMRI). In the
beginning, the experimental procedures were rather simple, usually using a
blockwise alternation of different stimulation conditions. In the following years,
the methodological spectrum expanded to event-related task designs, which
allow the analysis of brain responscs to brief stimuli under conditions that
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can rapidly change. Advances in the analysis of connectivity between brain
regions allow for the characterization of dynamic network interactions. Further
technical developments, including those in computational power and data stor-
age, led to the development of scanners with ultra-fast gradient systems. Today,
multichannel RF coils (array coils) can decrease acquisition time and/or increase
signal-to-noise and spatial resolution substantially by simultaneous measure-
ment of partial volumes. By using advanced acquisition schemes, whole brain
data collection with highly resolved slices is now routinely done within a few
seconds. In the past 4 years, the broad availability of clinical scanners has
given rise to an enormous amount of fMRI studies in psychiatric research.
Focussing on selected neurocognitive domains in schizophrenic patients, this
chapter reviews important { MRI studies of the past decade. Because of the sheer
volume of published results, our review cannot aim for all-inclusiveness and
should best be read as a partial and necessarily subjective view of a vital and

still expanding field.

1. Psychomotor Disturbances

Patients with schizophrenia frequently exhibit psychomotor disturbances.
Manifestations range from involuntary motor acts, neurological soft signs (e.g.,
coordination deficits) to complex disorders of behavioral control and catatonic
symptoms (Schroeder et al., 1991; Vrtunski et al., 1986). Although quite a lot of
fMRI research was performed in this domain, the neurofunctional basis of the
disturbances is still only incompletely known. Most studies used simple repetitive
motor activities (e.g., sequential finger opposition) alternating with resting con-
ditions in a block-design approach. Early investigations [e.g., the work of Wenz
(1994) or Schroder and colleagues (1995)] reported hypoactivation of primary
sensorimotor and supplementary motor cortices in schizophrenia, a finding not
consistently replicated by subsequent studies (Braus et al, 1999; Buckley et al.,
1997; Schroder et al., 1995, 1999; Wenz et al., 1994). In addition, data indicating
altered functional asymmetry of the cortical hemispheres during motor tasks have
been published [e.g., recently by the group of Yurgelun-Todd (2004); Bertolino
et al., 2004a; Mattay e al., 1997; Rogowska et al., 2004].

One emerging finding is that patients with schizophrenia may be character-
ized by a reduced lateralization index during motor performance. In light of the
usually pronounced lateralization of cortical activation during motor function,
this indicates an abnormal situation in terms of reduced contralateral recruitment
or deficient ipsilateral inhibition of motor areas, respectively. However, a
substantial number of contradictory findings, as well as some empirical data
(Bertolino et al., 2004a; Braus et al., 1999; 2000b), show that further studies in
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these areas will benefit from controlling for confounding factors such as
medication effects (see also pharmacological scction of this review).

Il. Early Visual Processing Deficits

Neuropsychological research has repeatedly confirmed the presence of visual
information-processing deficits in schizophrenia (Braff and Saccuzzo, 1981,
1985; Keri et al, 2000; Moritz et al, 2001). Among others, patients exhibit a
significantly increased crror rate during performance of so-called backward
masking tasks, which use contiguous distractor presentations to disturb the
sensory processing of target simuli (Braff and Saccuzzo, 1981, 1985). Another
affected visual domain is deficient perceptual discrimination of target velocities, a
research area extensively investigated by Holzman and coworkers (Chen et al,
1999a,b,c). Because some studies indicate that visual-processing abnormalities
may be observable in asymptomatic relatives of patients with schizophrenia
(Chen et al, 1999b; Green ¢t al, 1997), they may be valuable as a trait marker
of disease vulnerability. Delineation of the underlying neural-processing deficit
may, therefore, be valuable as an endophenotype.

Consequently, much research has been directed at the characterization of
visual information-processing deficits in behavioral experiments. Here, high error
rates during processing of stimuli of higher spatial frequency, or moving stimuli,
suggest a pathophysiological involvement of the dorsal visual-processing stream
in patients with schizophrenia (Cadenhead et al, 1998; O’Donnell e al., 1996;
Schwartz et al., 1999). The so-called magnocellular network comprises cortical
arcas specialized for the handling of motion and depth cues (e.g., the motion-
sensitive field V5 [hM'T], posterior-parietal cortex [PPC], and frontal eye fields
[FEF]; Ungerleider and Mishkin, 1982; Ungecrleider ¢ al, 1998). The exact
location of the presumed dorsal stream dysfunction, however, cannot be identi-
fied by use of a behavioral approach. Prior empirical data were, therefore,
interpreted in manifold ways [e.g., as a sign of a deficient prefrontal control
of lower visual areas or a thalamic filter dysfunction (Ken ¢ al., 2000; Levin,
1984a,b)]. Among others (Chen ef al., 1999a; Stuve et al., 1997; Tek ef al., 2002),
the group surrounding Holzman (Chen et al, 1999a,b,¢) assumes a “bottom-up”
processing of motion signals in V5 as being responsible for visual processing
dysfunctions and executive deficits observable in patents with schizophrenia
{e.g., eye-tracking dysfunction, spatial working memory deficits).

Only relatively few research groups have used fMRI to study carly visual-
information processing in schizophrenia to date. One of our own studies (Braus
et al., 2002) investigated visuoacoustic integration in 12 neuroleptic-naive patients
with a passive stimulation paradigm involving the simultancous presentation of a
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visual 6-Hz checkerboard and an auditory drumbeat stimulus. Compared with
healthy controls, the patient group displayed a significant activation decrease in
both the thalamic geniculate body and higher order areas of the dorsal processing
stream (PPC, FEF, and DLPFC). The results indicate a fundamental visual-
processing deficit of the dorsal stream network that is already noticeable at
disease onset, even in the absence of marked cognitive demands (Braus et al,
2002). Subsequent f MRI studies of our group examined the pathophysiological
model supposed by Holzman and colleagues, proposing a circumscribed func-
tional deficiency of V5 during visual motion perception. In a first step, we
cxamined brain functional correlates of patients with schizophrenia and healthy
controls during the passive perception of moving visual targets (Tost et al., 2003a).
The stimulation paradigm consisted of a pseudo-randomized presentation of
tilted and moving sinusoidal gratings, permitting the identification of V5 in the
occipitotemporal association cortex (see Fig. 1). Data analysis confirmed a
strong recruitment of the dorsal processing network in both groups. Furthermore,
group comparison verified a significantly enhanced activation of controls in
posterior-parictal areas, whereas activation differences in V5 were absent (see
Fig. 2).

The assumption of deficient processing of motion signals in V5 is largely
based on behavioral experiments indicating a significantly lower contrast sensi-
tivity for the discrimination of small-velocity differences in schizophrenia (Chen
et al., 1999¢). Thus, in a second step, we examined the neurobiological back-
ground of this phcnomenon with fMRI (Tost et al., 2003b, 2004). The block
design f MRI paradigm included the sequential presentation of moving sinusoidal
gratings with varying velocity differences, presented in a pseudo-randomized
manner (casy task condition: 11°/s vs. 5°/s; difficult task condition: 8°/s vs.
6°/s). Patients with schizophrenia and healthy controls were instructed to indi-
cate the faster grating of each stimulus pair during the scan. In both groups, task
performance yielded a significant activation enhancement of a highly distributed
visuomotor network, including subcortical parts of the visual system (lateral
geniculate nucleus), primary and extrastriate visual cortices (V1-V3), and higher
order areas of the dorsal visual processing stream (PPC, SMA, lateral premotor
cortex, DLPFC, sec Fig. 3). Direct comparison of the easy and difficult target
discrimination revealed a load-dependent activity enhancement in posterior-
parietal and prefrontal cortices but not V5. Interaction analysis disclosed a
significantly decreased activation of PPC and DLPFC in the paticnt group;
activation differences in V5, however, could not be verified. In summary, our
own functional imaging results do not support a popular hypothesis deduced
from behavioral data, suggesting a circumscribed processing deficit of the visual
motion area V5 in schizophrenia. Instead, our results point to a deficient
processing of motion cues at a higher level of the dorsal visual network
usually associated with cxecutive functioning, the control of eye movements,
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FI1G. 1. Visual motion pereeption paradigm. Statistical comparison of the different stimulation
conditions in a general lincar model analysis (moving vs. stationary gratings) allows the identification
of the motion-sensitive processing area V5 (hMT) in the occipital temporal association cortex.
(See Color Insert.)

and the “top-down” control of lower visual cortices (Kastner et al.,, 1998, 1999;
! Ungerleider ef al., 1998).

lil. Auditory System

The perception of voices in the absence of external stimuli (auditory halluci-
nations) is one of the cardinal symptoms of schizophrenia. Cognitive models first
suggested underlying abnormalities in the processing of inner specch, a notion
not supported by functional imaging studies. Instead, in the past 15 years,
empirical evidence repeatedly indicated structural and functional disturbances
of the supcrior temporal gyrus (STG), a crucial part of the network controlling
the perception and production of speech. A close relationship between the
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FiG. 2. Comparison of striate and extrastriate visual processing areas V1 V5 (contrast a:
stationary 4+ moving visual stimuli > baseline) and the motion-sclective processing area V3 (contrast
b: moving stimuli > stationary stimuli) in healthy controls (1) and schizophrenic patients (2). No
significant group differences are evident in the Jower parts of the dorsal visual network (interaction
analysis p < 0.0001, uncorrected). (See Color Inscrt.)

severity of auditory hallucinations and the extent of STG volume reduction, for
instance, was already found by Bartha and colleagues in 1990 (Barta et al,, 1990).
Functional imaging results provided by the groups of Schnorr (1995), Murray
(1993, 1995), and Woodrufl (1995, 1997) demonstrated a pronounced activity
enhancement of auditory- and speech-processing cortices during hallucinatory
experiences (Heschls gyrus, Broca and Wernicke area) (McGuire et al, 1993,
1995; Silbersweig et al, 1995; Woodruft et al, 1995, 1997). A particularly con-
vincing study was conducted by Dierks et al. (1999), which demonstrated the
potential of event-related fMRI study designs for psychiatric research. From a
neuroscientific point of view, these results yield a plausible explanation for the
fact that patients accept the internally generated voices as real.

Consistent with the proposal of a regional disconnection syndrome contribut-
ing to the symptomatology of schizophrenia, current fMRI, DT, and morpho-
metric imaging data indicate a correlation of hallucination severity with the
cxtent of the functional and structural connectivity abnormalities of the STG
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Fic. 3. Visuomotor activation associated with the discrimination of target velocities. Compared
with the healthy controls (1), schizophrenic patients (2) display a significant activation decrease in
higher order arcas of the dorsal visual processing stream (premotor cortex, SMA, PPC, insular cortex,
ACG; interaction analysis p < 0.0001, uncorrected). {(See Color Insert.)

(Gaser et al.,, 2004; Hubl e afl, 2004; Lawrie et al, 2002). Furthermore, these
alterations have been shown to interfere with the cortical processing of regular
auditory simuli in schizophrenia as well. An fMRI study of Wible and coworkers
(2001}, for example, provided evidence for a dysfunctional processing of mis-
match stimuli (a descriptive term for the presentation of differing tones cmbedded
in a series of standard tones) in the primary auditory cortex (Wible et al., 2001).
Other fMRI studies point to a diminished response of the temporal lobes to
external speech during hallucinatory experiences (David et al., 1996; Woodruff
et al, 1997). This phenomenon is usually cxplained as the competition of
physiological and pathological processes for limited neural processing capacity.

IV. Selective Attention

"The ncuropsychological term attention describes the selection and intcgra-
tion of relevant information units from the perceptual strcam, requiring the
complex interplay of different brain regions and functions. In schizophrenia
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research, scientific descriptions of attentional dysfunction can be traced back to
the initial descriptions by Kraepelin and Bleuler. These disturbances are consid-
ered by some as promising cognitive endophenotypes of discase vulnerability,
because they precede disease onset, persist during remissions, and are also found
in asymptomatic relatives (Cornblatt and Malhotra, 2001; Egan et al., 2000; Gold
and Thaker, 2002).

The continuous performance test (CPT)—rather a terminological label than
a standardized test device—is one of the most popular neuropsychological
measures in schizophrenia research. The term encompasses a variety of tasks
best summarized as requiring selective attention (typical task requirements:
selective responses to certain targets, inhibition of inadequate reactions to non-
targets, high rate of stimuli over a period of less than 10 minutes). Apart from
simple choice reaction tasks (involving the sclection of a certain target from an
assortment of stimuli, CPT-X) more complex CPT versions with additional
cognitive requirements can be distinguished. So-called degraded CPTs use
blurred visual presentations Lo manipulate the perceptual requirements of the
task (e.g., Siegel et al., 1995). Appropriate handling of contingent CPTs requires
the additional monitoring of preceding task conditions. Because of their strong
resemblance to 1-back tasks, these cognitive tests extend into the working mem-
ory domain (e.g,. CPT-AX, CPT-IP, and CPT-double-T). Other CPT variants
use interspersed distractors to assay impulse control; the resulting task demands
are similar to classic cognitive interference tasks (e.g., Stroop). Thus, any assess-
ment of functional imaging findings in this domain needs to carefully take the
specific task arrangements into account.

So far, most functional imaging studies have used contingent CPTs to exam-
ine selective attention dysfunction in schizophrenia. Dorsolateral prefrontal hy-
poactivation of the patient group is a widely replicated finding, likely because of
the moderate working memory load of the tasks (MacDonald and Carter, 2003;
Volz ¢t al., 1999). Barch and coworkers (2001) observed a comparable DLPFC
dysfunction in neuroleptic-naive patients as well, arguing against medication
effects (Barch et al., 2001). Simple CPT choice-reaction tasks, however, were
rarely investigated with fMRI. Only one study by Eyler and colleagues (2004)
used a simple CPT paradigm, providing evidence for a right inferior frontal
activation decrease in the patient group. The authors hypothesized that the
unusual ventral lateral location of the group difference may be a consequence
of the lower executive demands of their task (Eyler et al., 2004).

An important neural interface of cognition, emotion, and behavioral control,
the dorsal anterior cingulate gyrus (ACG) is prominently activated during the
performance of cognitive interference tasks (Cohen e al, 2000). Early PET
studies already showed ACG hypoperfusion during interference in schizophrenia
(Carter et al., 1997). According to Yiicel and colleagues (2002), the activation loss
may coincide with the absence of a morphologically differentiated paracingulate
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gyrus in patients (Yicel ef al.,, 2002). Several studics conducted by Carter, Barch,

‘ohen, and colleagues demonstrated a comparatively specific (performance
correlated) ACG dysfunction in schizophrenia (Carter et al, 1999, 2001); the
authors extended their results into a framework encompassing computational
models of prefrontal dopamine function (Braver ef al,, 1999). An fMRI study
conducted by Heckers and coworkers (2004) confirmed, even under comparable
task performance conditions, an absence or abnormal localization of dorsal ACG
activation in patients with schizophrenia (Heckers ef al, 2004). The described
functional ACG results are supplemented by growing DTT evidence indicating
disturbed integrity of the cingulate bundle (Kubicki ¢f al.,, 2003; Sun et al., 2003).
Although the total number of studies on this topic is still limited to date, current
evidence for a structural and functional disturbance of the anterior cingulate
gyrus in schizophrenia is convincing (Weiss e/ al., 2003).

V. Working Memory Dysfunction

The institution and flexible adaptation of behavioral patterns depending on
cnvironmental demands is one of the main functions of prefrontal cortex. The
high rate of so-called exccutive dysfunction (e.g., working memory abnormalities)
thus argues for involvement of the prefrontal regions in the pathogenesis of
schizophrenia (Glahn et al., 2000; Gold et al., 1997; Goldman-Rakic, 1994; Silver
et al., 2003). Unlike short-term memory, the working memory concept is aimed at
the active storage of information necessary for the performance of cognitive
operations but not available from the cnvironment. So-called “n-back” tasks
are a popular neuropsychological instrument for the assessment of working
memory dysfunction. Here, participants are required to constantly monitor a
sequence of stimulus presentations and react to items that match the one pre-
sented “n” stimuli previously. These tasks are popular, because working memory
load can be increased parametrically by increasing the paramcter “n” (1-back,
2-back, etc.) while keeping stimulus and responsc conditions constant. Another
popular measure of executive function is the Wisconsin card sorting test (WCST),
a complex task requiring abstract reasoning and cognitive flexibility in addition to
working memory.

Both instruments have been used extensively in imaging research to examine
the neurobiological correlates of frontal lobe dysfunction in schizophrenia. Pa-
tients with schizophrenia display irregular activation patterns during working
memory tasks regardless of performance level (Honey et al, 2002), motivation
(Berman et al, 1988), or the particular stimulus material used (Spindler et al,
1997; Stevens et al., 1998; Tek ef al., 2002; Thermenos ¢t al., 2004). Comparable
differences can also be observed in healthy siblings of patients with schizophrenia
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(Callicott et al,, 2004). The precise mechanism of the prefrontal functional
deficit, however, is still a matter of some debate. Most early functional imaging
studies indicated a DLPFC hypoactivation, both at rest and during working
memory performance (Andreasen et al, 1997, Paulman et al., 1990; Volz e al.,
1999). Discrepant results, however, accumulated in the past several years have
made it necessary that the theory of a pure “hypofrontality” in schizophrenia
had to be revised, or at least amended (Manoach et al, 1999, 2000; Ramsey
et al., 2002).

Several lines of evidence support the contention that the simple descriptive
term of a hypoactivation or hyperactivation underestimates the real complexity
of the issue (Callicott et al., 2003). Even in healthy subjects, for instance, DLPFC
activation follows a complex and load-dependent course similar to an inverted U
function. According to this, prefrontal activation level increases with task de-
mands until a capacity limit is reached, followed by DLPYC activation decrease
concomitant with behavioral decompensation (as indicated by the corresponding
increase of performance errors) (Callicott et al., 1999). A comparable relationship
between working memory effort and amount of prefrontal neural discharge was
observed in animal studies (Goldman-Rakic e al, 2000). Second, some groups
have observed an increase of activation as subjects cxceed their capacity limit
(Mattay et al., 2003), arguing for an “(injefficiency” concept in which increased
activation may be indicative of excessive and task-inadequate neuronal recruit-
ment. A further complication is derived from the fact that neuroimaging data
typically reflect a mapping of statistical significance levels representing composite
measures of “signal” and “noise” (as measured by the mean shift in BOLD effect
and the residual variance, respectively) that may correspond to differing neuronal
phenomena in the context of working memory. Recent reviews have attcmpted
to reconcile discrepant findings in this domain in the context of more complex
functional models (Callicott ez al., 2000; Manoach, 2003).

Current pathophysiological theories, therefore, assume deficient neural pro-
cessing in paticnts with schizophrenia that may, depending on the current
capacity reserve, manifest as prefrontal hypcractvation or hypoactivation, re-
spectively. The course of the DLPFC activation level may thus correspond to a
pathological left shift in the inverted U load-response curve described previously:
patients may display a relatively enhanced prefrontal activation level under low
cognitive load (hyperactivity subsequent to the inefficient use of neural resourccs),
whereas the reversc may be found under increasing working memory demands
(hypoactivity as sign of neural capacity constraints) (Jansma e al., 2004; Manoach
et al., 2000). A recent article by Callicott and colleagues (2003) found group
differences in DLPFC activation, supporting the pathophysiological model of
a shifted inverted U function in schizophrenia (Callicott et al., 2003). However,
findings not compatible with this model were noted, as well. The functional
corrclates of DLPFC dysfunction thus seem to manifest as a highly complex,
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capacity-dependent pattern of coincident hyperactivity and hypoactivity states.
The main commonality of most studies seems to be less the directionality than the
location of the abnormality, namely, the middle frontal gyrus and the
corresponding Brodmann areas 46 and 9. More work will be necessary before
a theoretical account can be reached that encompasses the current empirical data
while remaining predictive enough to be potentially falsifiable.

VI. Antipsychofic Drug Effects

The psychopharmacology of schizophrenia has progressed in the past 10
years, focusing on the development of novel antipsychotic drugs with an atypical
effect profile (e.g., clozapine, amisulpride, olanzapine). Somc studies indicate
that, compared with typical neuroleptic drugs (e.g., haloperidol), these substances
may be superior with regard to the treatment of negative symptoms and cognitive
deficits (Meltzer and McGurk, 1999; Meltzer et al., 1994). Although other studies
have shown no such advantage, the absence of substantial extrapyramidal side
effects is a definite improvement in patient quality of life in many cases. Until the
mid-nineties, research on antipsychotic drug effccts was mainly limited to behav-
ioral experiments (Lieberman et al., 1994; Nestor ¢t al., 1991; Zahn ef al., 1994).
MRI studies examining structural, functional, and metabolic correlates of anti-
psychotic drug treatment emerged at the turn of the last century (Arango et al.,
2003; Bertolino et al, 2001; Braus et al, 2001; Ende, 2000; Ende et al., 2000;
Heitmiller et al., 2004).

To date, most functional MRI studies in this ficld have been aimed at drug-
induced changes of voluntary motor control and executive functioning. In this
context, favorable effects of atypical antipsychotics on putative functional dis-
turbances in schizophrenia have been repeatedly reported (Ramsey et al., 2002).
A recent study by Bertolino and coworkers (2004), for instance, shows a normali-
zation of sensorimotor hypoactivation in the course of olanzapine treatment
(Bertolino et al., 2004a). Another longitudinal study conducted by the group of
Andreasen (2001) showed normalized functional connectivity of cortico-talamic-
cerchellar-cortical circuits with the same agent (Stephan et al., 2001). Further-
more, several older studies suggest at least partially beneficial treatment effccts.
Especially prefrontal functions showed some degree of normalization with atypi-
cal (but not typical) antipsychotic drug treatment (Braus et al.,, 1999; 2000a,b,c;
Honey et al., 1999). This notion is supported by MR spectroscopy data indicating
a higher level of the neuronal viability marker N-acetylaspartate (NAA) in
paticnts receiving atypical treatment (Bertolino ef al,, 2001) as opposed to patients
with typical antipsychotics (Ende et al., 2000).
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A conclusive picture does not currently cmerge from imaging results on
antipsychotic drug effects conducted to date. The amount of scientific publica-
tions on this topic is still small, and methodologically necessary study designs (€-8-
double-blind) are almost completely lacking. Given the cross-sectional design of
most of the studics, the conclusion of a “normalizing” or “restoring” drug
effect—drawn by some authors from reductions or absence of fMRI group
differences—must remain tentative. Furthermore, even in longitudinal study
designs, a demonstration of functional recovery is conditional on the reliable
and valid characterization of the underlying pathology. As reviewed, however, for
most of the studied domains, the functional correlate of the schizophrenic deficit
syndrome is not yet precisely delineated. This may account for some drug effect
inconsistencies reported (c.g., compare the data provided by Ramsey et al. and
Honey et al. in Table 1: drug-induced restoration of cxecutive functions may
manifest as enhanced activation subscquent to a pathological hypoactivity or
reduced activation after a pathological hyperactivity). Future fMRI studies with
more complex study designs will certainly be capable of dissolving this apparent
heterogeneity (€8, double-blind investigation of genctically defined responder
groups). Convergent observations indicating an association of functional and

clinical improvement with the COMT genotype are major steps in this direction
(Bertolino et al., 2004b).

VIl. Neuroimaging Genomics

The completion of the draft sequence of the human genome was a pivotal
achievement that profoundly changed all aspects of medicine and is beginning to
(ransform neuroimaging in psychiatry as well. The characterization of the effects
of genomic varjation on neural systems level function using neuroimaging pro-
mises to yield decisive insights into both normal and dysfunctional processes
important for protective and risk factors for mental illness (Gould and Husseini,
2004). In the case of schizophrenia, it seems overwhelmingly likely that the
substantial genetic component of the disease risk is conferred by multiple, inter-
acting, individually small-risk or susceptibility genes. A promising strategy is,
therefore, the characterization of convergent pathways involved in the effects
of genomic variation in such risk genes (c.g., dysbindin, neuroregulin 1, catechol-
O-methyltransterase COMT, BDNF) on neural function. This work will
usually commence after gene identification by linkage, association, or candidacy
(Harrison and Weinberger, 2004). Even further in the future may be the opposite
strategy, whercby systems-level cndophenotypes, such as those defined by
neuroimaging, may become useful in gene-finding efforts.
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Dopamine catabolism: COMT val-allele is associated with an enhanced risk for

LEgan et al. (2001)

schizophrenia, inefficient activation of DLPFC {working memory), and executive cognitive

deficits (Egan et al., 2001).

*X, cross-sectional design; L, longitudinal design.
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Current work has largely focused on functional polymorphisms with at least
partially characterized eflects on their gene products. A common Vall08/
158Met substitution in the gene for COMT, for example, leads to a substantial
decrease in the activity of this major enzyme in dopamine catabolism (Chen et al.,
2004). Another well-studied example outside the domain of schizophrenia is the
5-HTTPLR polymorphism in the promoter region of the serotonin transporter
(Hariri et al., 2002). Hariri and Weinberger (2003) enumerate requirements for
experimental design in neuroimaging genomics (Hariri and Weinberger, 2003):
use of well-characterized behavioral probes; control of confounding variables
such as age, performance, IQ ; and control of genomic confounds. The often-
small effects referable to genetic variation in susceptibility genes require large
sample sizes and convergent evidence from multimodal imaging (structural,
functional, neurochemical) combined with cognitive and clinical data (Egan
et al., 2004). As in the field of psychiatric genetics as a whole, the definition and
validation of useful statistical standards guiding work in this area is still in flux.

The first example of this approach in schizophrenia was the characterization
of the effect of the COMT polymorphism on cognition, prefrontal function, and
risk for schizophrenia by Egan and coworkers (Egan et al., 2001). This finding was
subscquently independently replicated (Bilder et al., 2004; Goldberg et al., 2003)
and extended to other psychiatric conditions as well (Tithonen et al, 1999;
Zubieta ¢t al., 2003). A similar multimodal approach was recently used by the
same group to characterize a risk haplotype in a gene encoding a metabotropic
glutamate receptor (GRM3), demonstrating inefficient prefrontal response, re-
duced neuronal integrity in prefrontal cortex, hypoactivation of the hippocampus
during episodic memory, as well as impaired cognitive performance during
verbal memory associated with an identified genetic variation conferring
increased risk for schizophrenia. This work represents a major advance, because
the risk haplotype as such did not have a direct functional correlate on the
genetic/molecular level because it was composed of noncoding single nucleotide
polymorphisms. Rather, the imaging work itself provided crucial convergent
evidence that this risk haplotype has functional effects (Egan ef al., 2004).

The characterization of susceptibility gene mechanisms using multimodal
neuroimaging is likely to incrcase in importance in the coming years and
substantially enrich our understanding of the pathophysiology of schizophrenia.
The first studies in this emerging field attest to the unexpectedly high power of
imaging approaches to delineate genomic variation. It is to be hoped that the
detection of convergent functional pathways of diverse risk genes will lead not
only to better understanding of the illness but also to the discovery of novel
treatment targets. In any case, functional neuroimaging will likely retain its
pivotal role in the characterization of systems-level mechanisms linking the
genetic-molecular level to mental and social phenomena.
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